Behind the performance of Equally Weighted Indices

May, 04, 2011
Behind the performance of Equally Weighted Indices

Bruno Monnier and Ksenya Rulik

May, 04, 2011

Abstract

Equally weighted portfolios that allocate the same weight to every portfolio constituent emerged recently as an attractive alternative to the traditional market-capitalization weighted scheme. The equally-weighted versions of traditional equity indices tend to outperform their market-cap counterparts over the long run. The article examines the sources of this outperformance. We show that Equally Weighted portfolio on European stocks outperforms the traditional index because the portfolio is more exposed to mid and small capitalizations, and also due to homogeneous repartition of the weights inside the large cap sector. The rebalancing effect, however did not contribute positively to the portfolio performance.
Behind the performance of Equally Weighted Indices
A Spreading Concept

Equal Weight approach in broad equity investing is one of the most successful recent novelties in the alternative equity indexing space. Giving the same weight to all stocks in the universe is seemingly the most obvious strategy and as such a most straight-forward benchmark. Boosted by the expansion of ETFs, a perfect wrap that helps to spread and democratize the Equal Weight concept, the product family already counted more than USD 3.5 bln AUM as of Apr-2011 under this wrapper.

All major index providers have launched Equal Weight versions of their flagship indices within the last 8 years. Two examples covering the largest US and European stocks are equally weighted versions of S&P 500 and STOXX Europe 600 indices, launched, respectively, in January 2003 and October 2010. A growing amount of publications on equal weight investing is coming from industry professionals as well as from the academia. The major question being investigated is excess performance of equally weighted portfolios against the dominant benchmarks: market capitalization weighted portfolios. The debate is still open since performance comparison results exhibit high dependency on period and equity basket selected. Frequent arguments that are often invoked in relation to the equally weighted strategies are size-insensitive allocation, resulting in overweighting small stocks compared to a market-capitalization weighted portfolio, contrarian-like rebalancing enforced at each reset of the portfolio to equal weights (buy low, sell high), and potentially high turnover associated with the rebalancing activity. Here we intend to shed some light on the impact of these features on the equal weight strategy.

What to expect from an equally weighted allocation?

Quantitative investment generally involves complex modeling in order to extract meaningful and valuable insights from data related to past observations. What can be said about a strategy as straightforward as the equal weighting (further referred as EW) which mostly disregards available information?

Actually, the EW is not totally information free, as it involves the choice of an investment basket. The choice of portfolio constituents is itself a major information. Taking the composition of a broad market index as the investment universe for an EW portfolio allows to build a basket that is representative of the chosen equity market or sector. Such a basket is generally closely monitored by the market and satisfies reasonable liquidity criteria.

Once the basket is chosen, an EW index can be set up as a pure rule based strategy, and the EW methodology is very stable from one index provider to another. An EW index:

1. has the same constituents as its market capitalization weighted counterpart (MW index),
2. allocates the same investment amount to all its constituents,
3. is rebalanced periodically (usually quarterly) to restore the equally weighted allocation.

The process is estimation free, which means that unlike most quantitative based indices, it requires no estimation of either risk profile or expected returns. EW index performance is easy to interpret: it is the average performance of all assets in the universe over the period.

Notwithstanding different allocation scheme and periodic rebalancing feature, the performance of EW portfolio is closely related to that...
of the market-capitalization weighted benchmark. Indeed, correlation between market-capitalization weighted and equally weighted indices on the same basket are often of the order of 95-99%, and their risk levels are very similar. This high level of correlation is not surprising, since an EW strategy is designed to provide access to the chosen market segment, where the corresponding market factor is the dominant one.

To appreciate the value added by the EW investing, one has to focus on excess return - the difference of the returns of equally weighted and market-cap weighted portfolios (Table 1). Here we consider two distinctive features of EW portfolios: periodic rebalancing and size-neutral allocation, and show how each of these features translates into properties of excess return. In the remaining sections, we probe the existence of a rebalancing bonus for the EW strategy, then we estimate the magnitude of the costs associated with portfolio turnover, finally we assess the impact of size neutrality on the excess return.

For this study we use a broad European universe, represented by the components of the STOXX Europe 600 index, along with the performance of auxiliary subportfolios representing performance of non-overlapping subgroups of the main index, containing stocks of different size buckets. To simulate the performance of EW portfolios we use the procedure described above, with quarterly rebalancing made each quarter-end. We also reconstruct the corresponding market-capitalization portfolios by weighting the stocks by their free-float market capitalization.

Effect of rebalancing: is it all about being contrarian?

Market capitalization weighting approach represents the only truly passive investment strategy. Equal weighting cannot remain passive, since price movements imply an allocation drift. At the end of a given period the stocks that performed better than the average end up having higher weights and the stocks that underperformed the average turn underweight with respect to the initial equal allocation. Consequently, one has to reduce periodically the investment in relative over-performers and to increase positions in relative underperformers to restore the equally weighted allocation. Though it may seem a pure maintenance operation, there are claims that this is one of the performance drivers of the strategy. This can be viewed as:

- A profit taking scheme: realise the relative profits at the end of the period. The EW index doesn’t let itself be carried away in a momentum pattern.
- A contrarian strategy: it buys (sells) stocks that have been going out of favour

<table>
<thead>
<tr>
<th>Index</th>
<th>2003-2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Total</th>
<th>Std %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPXEWTR</td>
<td>107.37</td>
<td>1.93</td>
<td>-41.16</td>
<td>50.93</td>
<td>20.58</td>
<td>126.35</td>
<td>23.46</td>
</tr>
<tr>
<td>SPTR</td>
<td>73.44</td>
<td>6.22</td>
<td>-38.30</td>
<td>29.56</td>
<td>13.91</td>
<td>67.75</td>
<td>21.11</td>
</tr>
<tr>
<td>Excess Return</td>
<td>33.93</td>
<td>-4.29</td>
<td>-2.85</td>
<td>21.37</td>
<td>6.67</td>
<td>58.61</td>
<td>4.54</td>
</tr>
<tr>
<td>SXXEWR</td>
<td>152.38</td>
<td>-3.28</td>
<td>-48.85</td>
<td>49.32</td>
<td>19.63</td>
<td>123.03</td>
<td>20.73</td>
</tr>
<tr>
<td>SXXR</td>
<td>100.6</td>
<td>2.29</td>
<td>-44.14</td>
<td>32.99</td>
<td>11.94</td>
<td>70.62</td>
<td>20.42</td>
</tr>
<tr>
<td>Excess Return</td>
<td>51.78</td>
<td>-5.57</td>
<td>-4.71</td>
<td>16.33</td>
<td>7.7</td>
<td>52.41</td>
<td>4.96</td>
</tr>
</tbody>
</table>

Table 1: Indices’ performance comparison
(gained momentum) so it may profit from
future price corrections when information
is fully incorporated in market prices.

These arguments in favor of the equal weight
investing seem intuitive and self-evident, and
as such they remain under-investigated. Does
the equally weighted strategy really benefit
from rebalancing? What is the magnitude of
its contribution to the excess performance?

We propose to assess the payoff related to
rebalancing by using the following decompo-
sition. We compare period-by-period perfor-
ance of two portfolios (Figure 1):

1. an equally weighted portfolio that at the
beginning of each period is rebalanced to
exact equally weighted allocation, and

2. a ”non-rebalanced” equally weighted port-
folio that was exactly equally weighted one
period before but hasn’t been rebalanced
recently.

Figure 1: Rebalancing Test Construction

Another way to visualize this test is to imag-
ine a swap entered in by two parties with pay-
ments made at each rebalancing date. Parties
exchange the performance of the ”rebalanced”
EW portfolio and the performance of the ”non-
rebalanced” EW portfolio (here a new ”non-
rebalanced” portfolio is fixed at the preceding
rebalancing date). By cumulating the swap
payments one has an idea of the magnitude
and persistence of the rebalancing effect.

The two portfolios follow the same Equal
Weight concept, and thus have essentially the
same fundamental exposures. The differences
in performance of these strategies are thus
closely related to the stock allocation adjust-
ment performed at the last rebalancing.

Figure 2 depicts the cumulated gains and
losses associated with rebalancing activity over
a 8 year period for the broad European EW
portfolio. This is compared to the cumulated
excess return of the EW portfolio with respect
to the market capitalization weighted one (a
cumulative sum of one-quarter excess returns
is used here). Indeed, the rebalancing pay-
off can be seen as a part of the excess return
coming from the rebalancing activity, the rest
being explained by factors other than rebal-
ancing. The magnitude of this effect is small

Figure 2: Excess Performance : Contribution
of periodic rebalancing

compared to that of the total excess return,
as one could expects given the similarity be-
tween the two test portfolios. Important infor-
mation is in the shape and in the trend of this
contribution. There was no systematic rebal-
ancing benefit over time for the EW strategy,
with no definite trend. Volatility of the contribution changes with the changes in market conditions, being more important in the times of market stress. On average, the rebalancing effect was -2.4 basis points per quarter, with standard deviation of 0.5%. This appears to be marginal with respect to the excess performance of equally weighted index over market capitalization weighted index, that was on average 1.2% per quarter, with standard deviation of 3.05%. The rebalancing contribution is not stable, or even positive, over time and thus cannot be deemed a reliable source of performance. The rebalancing adjustment though is essential to the design of the Equally Weighted portfolio, as its keeps the portfolio close to the target weights.

What is the impact of the portfolio turnover?

Implementing an equal weight strategy presents some concerns. The most apparent drawback is a rebalancing cost that is higher than for a passive investment. There are two main sources of turnover. The first one is specific to the EW strategy, it arises when the stocks already present in the portfolio are rebalanced to the target weights. This kind of turnover is directly linked to cross-sectional dispersion of returns in the universe, and is absent in an investment that follows a market-capitalization weighted index. Indeed, one can show that this price-driven part of rebalancing is proportional to the cross-sectional mean absolute deviation (MAD) of returns (quarterly returns if the strategy is rebalanced quarterly, monthly returns is the strategy is rebalanced monthly, etc.).

$$\text{turnover} \sim \frac{\sum_{i=1}^{M} |r_i - R_t|}{M(1 + R_t)} = \frac{\text{MAD}}{1 + R_t}$$ \hspace{1cm} (1)

where R is the average one-period return of the stocks in the portfolio, r_i are the returns of single stocks, and M is the number of stocks in the portfolio. In the case of normally distributed returns across the universe with zero mean ($R = 0$), the MAD is just proportional to the cross-sectional dispersion of the stocks’ returns: $\text{MAD} = \sqrt{\frac{2}{\pi}} \text{std}$, or $\text{MAD} \sim 0.8 \text{std}$. That is, this part of turnover is proportional to the cross-sectional dispersion of stock returns and does not depend explicitly on the number of stocks M. For example, if EW strategy is rebalanced quarterly, the relevant measure is the cross-sectional dispersion of quarterly returns, that for a broad European basket since 2003 was situated between [8.8%, 39.1%], with the average of 13.6%. This gives an estimation that the order of magnitude for this ”structural” turnover is around 10.9% quarterly. This is only slightly higher than the historical estimate of the structural turnover on our European broad EW portfolio, that is 9.2% per quarter on average.

Another source of turnover is linked to changes in the investment universe. These changes can be quite frequent in a large basket: stocks previously meeting the inclusion criteria fail to do so upon the current review and are replaced accordingly by the runners-up. Some corporate actions, like spin-offs and mergers, also affect the composition of the portfolio. Such a turnover is inherent to both market-capitalization weighted and equally weighted indices, although not with the same order of magnitude. The main criteria for inclusion being size, universe revisions affect mostly smaller capitalization stocks. Given that a market-capitalization weighted index has tiny weights allocated to the smallest stocks, the turnover generated will be smaller than for an EW portfolio that allocates systematically more weight to the small stocks. Swapping one small stock for another would generate a
turnover of roughly 0.05% for a capitalization-weighted portfolio compared to 0.3% for an EW portfolio. Changes in the universe represent a non negligible portion of the overall transaction cost. The split of the total (annual) turnover into the two factors is in Table 2.

<table>
<thead>
<tr>
<th>Turnover (%)</th>
<th>Dispersion Contribution</th>
<th>Universe Change</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW</td>
<td>36.8%</td>
<td>17.4%</td>
<td>54.2%</td>
</tr>
<tr>
<td>MW</td>
<td>0</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 2: Breakdown of annual turnover

The turnover of the equal-weighted strategy is clearly dominated by the dispersion factor, accounting for 68% of the total turnover. Investment universe changes result in a turnover of 5% per year for the passive MW portfolio, and a three times larger turnover for the EW portfolio. Still, in absolute terms the total impact of rebalancing cost on the performance is negligible. Assuming a transaction fee of 5 basis points, the transaction cost drag for the EW index is less than 3 basis points per year.

Effect of Size Neutrality: One weight fits all?

Size exposure is by far the greatest difference between the market-capitalization weighted and equally weighted portfolios. In the EW version of the STOXX Europe 600 index weights of the largest companies are divided roughly by 10 while weights of the smallest companies are multiplied by 10 relative to the MW index. Further, if we rank the STOXX 600 universe by market capitalization and divide it into three terciles (Large 200, Mid 200 and Small 200) the weight of the Large tercile will be more than halved, the weight of the Mid tercile will be doubled and finally the weight of the Small tercile will be multiplied by 6 in the EW portfolio relative to its MW counterpart.

It is convenient to split our broad European portfolio into separate sub-portfolios representing the three size terciles. Each such sub-portfolio can be constructed using market-capitalization weighting (MW Large, MW Mid, MW Small), or equal weighting (EW Large, EW Mid, EW Small). For example, a broad EW portfolio can be seen as an equal weight combination of EW Large, EW Mid and EW Small, while a broad MW portfolio is composed of a weighted sum of the MW Large, MW Mid and MW Small sub-portfolios.

Figure 3: Performance Large/Mid/Small

MW Small and MW Mid size sub-portfolios showed much stronger performance during bull markets than the MW Large sub-portfolio, followed by stronger corrections (Figure 3). One can see that the broad MW portfolio performance was very close to that of the MW Large sub-portfolio, following from the dominance of large stocks in the market-capitalization weighting. Indeed, the 200 Largest stocks represent 80% of the total market-capitalization in the broad MW portfolio.

Proceeding along this line, one can decompose the excess performance of the EW portfolio in a way that reflects:

Behind the performance of Equally Weighted Indices
Table 3: Performance Large/Mid/Small

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>2003-2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Total</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW All</td>
<td>128.07</td>
<td>-4.75</td>
<td>-49.61</td>
<td>45.7</td>
<td>17.39</td>
<td>87.21</td>
<td>19.86</td>
</tr>
<tr>
<td>EW Large</td>
<td>91.8</td>
<td>1.78</td>
<td>-48.82</td>
<td>34.39</td>
<td>12.7</td>
<td>51.33</td>
<td>20.95</td>
</tr>
<tr>
<td>EW Mid</td>
<td>141.75</td>
<td>-7.94</td>
<td>-48.56</td>
<td>45.8</td>
<td>18.26</td>
<td>97.42</td>
<td>19.65</td>
</tr>
<tr>
<td>EW Small</td>
<td>154.72</td>
<td>-7.98</td>
<td>-51.43</td>
<td>56.1</td>
<td>21.18</td>
<td>115.33</td>
<td>19.76</td>
</tr>
<tr>
<td>MW All</td>
<td>79.2</td>
<td>-0.17</td>
<td>-45.56</td>
<td>28.04</td>
<td>8.64</td>
<td>35.47</td>
<td>19.92</td>
</tr>
<tr>
<td>MW Large</td>
<td>68.14</td>
<td>1.51</td>
<td>-45.01</td>
<td>25.28</td>
<td>6.12</td>
<td>24.79</td>
<td>20.25</td>
</tr>
<tr>
<td>MW Mid</td>
<td>138.01</td>
<td>-7.55</td>
<td>-47.11</td>
<td>41.17</td>
<td>19.6</td>
<td>96.49</td>
<td>19.22</td>
</tr>
<tr>
<td>MW Small</td>
<td>156.55</td>
<td>-5.93</td>
<td>-51.16</td>
<td>49.5</td>
<td>22.49</td>
<td>115.84</td>
<td>19.57</td>
</tr>
</tbody>
</table>

1. **Size allocation**: the effects of different exposure to the market-cap weighted size sub-portfolios in EW and MW cases,

2. **Size selection**: the effects coming from altering the weighting inside each size sub-portfolio, i.e. switching from market-capitalisation weighting to equal weighting inside each size tercile.

We can summarize this decomposition as follows:

\[\Delta R_{EW-MW} = \sum_{i=1}^{M} \left(\frac{1}{M} - w_i \right) r_i = \]

\[= \frac{1}{3} \sum_{K=L,M,S} \sum_{i} \left(\frac{1}{M'} - 3 w_i \right) r_i = \]

\[= \frac{1}{3} \sum_{K=L,M,S} \sum_{i} \left(\frac{1}{M'} - w_i^K \right) r_i + \]

\[+ \sum_{K=L,M,S} \left(\frac{1}{3} - \frac{1}{3} \beta_K \right) w^K_i r_i = \]

\[= \frac{1}{3} \sum_{K=L,M,S} \Delta R^K_{EW-MW} + \]

\[+ \sum_{K=L,M,S} \alpha_K R^K_{MW} \]

Here the \(M' = M/3 \) is representing the number of stocks in the broad and size portfolios (\(M = 600 \) in our example). \(w_i \) are the stock weights in the MW portfolio, \(w^K_i = \beta_K w_i \) are weights in MW Large, Mid and Small portfolios (rescaled to 100% leverage).

As results from the historical study, the major part of the excess performance of EW portfolio over MW portfolio is related to the size allocation effect (Figure 4), driven by the excess performance of mid and small stocks over that of the large stocks (Table 3). The selection effect, while significantly positive, accounts for less than 1/4 of the total excess performance. On average the selection effect amounts to 27 basis points per quarter while the allocation effect amounts to 99 basis points. Interestingly,
the size-neutral allocation gives very different results across the three size terciles (Figure 5). Only the Large size portfolio really benefits from the EW allocation. On the contrary, the Mid and Small size portfolios have essentially flat contribution, apart the effect of the sharp rebound of the smallest stocks in 2009.

This confirms that Equal Weight allocation is a remedy in the case when there are significant asymmetries present in the market capitalization, as is the case of the strong mega-cap bias of the Large MW portfolio (Figure 6).

Figure 5: Size Allocation Effect : Small, Mid, Large terciles

![Image of graph showing size allocation effect]

Conclusion

Though extremely simple in its concept, the Equal Weight alternative raises many non-trivial questions when one attempts to interpret its performance relative to a traditional market-capitalization weighted benchmark. This strategy has an objective of providing access to a chosen equity market segment while systematically avoiding stock concentration problems. As such, this investing technique requires periodic portfolio adjustments, that come at a cost of higher portfolio turnover, but generate no significant performance drag. Being clearly related to the observed return dispersion, these costs stayed on average under 3 basis points during the past 10 years for the broad European portfolio that we used here as an example. Contrary to the commonly used argument, we found no definite benefit from the rebalancing contrarian feature on the excess performance of the equally weighted portfolio with respect to its market-capitalization weighted counterpart. The total effect of the ”rebalancing payoff” for the broad European portfolio under study was slightly negative over the past 8 years, having no definite trend in between. Instead of being an additional performance driver, the rebalancing played a role of technical adjustment needed to keep the allocation close to the objective.

Figure 6: Market capitalization Asymmetries : Blue - MW sorted weights, Green - EW weights

Behind the performance of Equally Weighted Indices
The size allocation of the equally weighted portfolio could be better understood in the allocation/selection framework, similar to that of the sector decomposition commonly used in the industry. Splitting the size exposure of the equally weighed portfolio into the size allocation (over/under-weighting of different size factors) and size selection (implementing equal weighting inside each size tercile), allows to appreciate the benefits of size-neutral weighting across different size segments. As a result, the main driver of the excess performance came from altering the global size exposure (overweighting mid and small stocks and underweighting the large stocks), while some smaller but significant part came also from imposing Equal Weight allocation inside each size segment. In particular, the Equal Weight scheme worked well only in the Large size sub-portfolio, manifesting the benefit of correcting the mega-cap bias.

Notes

1 ETF Landscape Global Handbook, BlackRock, Q1 2011
2 See for example "Equal Weight Indexing: Seven Years Later" by Liyu Zeng, Shrikant Dash (S&P Research), July 2010; "Equal Weight ETFs" by Anthony Davidow (RydexShares), January 2011; and "Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio" by Victor DeMiguel, Lorenzo Garlappi and Raman Uppal, Review of Financial Studies, vol. 22, 2009.
3 Underlying data is courtesy of Stoxx. The Stoxx indices are the intellectual property (including registered trademarks) of STOXX Limited, Zurich, Switzerland and/or its licensors ("Licensors"), which is used under license. None of the products based on those Indices are sponsored, endorsed, sold or promoted by STOXX and its Licensors and neither of the Licensors shall have any liability with respect thereto.
4 Cumulative excess return by quarter, this generates discrepancies with compounded performance figures such as those of Table III.
About Ossiam

Ossiam is a research-driven French asset management firm (authorized by the Autorité des Marchés Financiers) and specializes in delivering smart beta* solutions. Efficient indexing is at the core of Ossiam's business model. The firm was founded in response to a post-subprime crisis demand from investors for simplicity, liquidity and transparency. Given the environment, there was a growing need among investors for enhanced beta exposure and risk hedging. Ossiam is focused on the development of innovative investment solutions for investors via a new generation of indices.

*‘Smart beta’ refers to systematically managed, non-market-cap-weighted strategies covering any asset class.

Ossiam, a subsidiary of Natixis Global Asset Management, is a French asset manager authorized by the Autorité des Marchés Financiers (Agreement No. GP-10000016). Although information contained herein is from sources believed to be reliable, Ossiam makes no representation or warranty regarding the accuracy of any information of which it is not the source. The information presented in this document is based on market data at a given moment and may change from time to time.

This material has been prepared solely for informational purposes only and it is not intended to be and should not be considered as an offer, or a solicitation of an offer, or an invitation or a personal recommendation to buy or sell participating shares in any Ossiam Fund, or any security or financial instrument, or to participate in any investment strategy, directly or indirectly.

It is intended for use only by those recipients to whom it is made directly available by Ossiam. Ossiam will not treat recipients of this material as its clients by virtue of their receiving this material.

This material reflects the views and opinions of the individual authors at this date and in no way the official position or advices of any kind of these authors or of Ossiam and thus does not engage the responsibility of Ossiam nor of any of its officers or employees. All performance information set forth herein is based on historical data and, in some cases, hypothetical data, and may reflect certain assumptions with respect to fees, expenses, taxes, capital charges, allocations and other factors that affect the computation of the returns.

Past performance is not necessarily a guide to future performance. Any opinions expressed herein are statements of our judgment on this date and are subject to change without notice. Ossiam assume no fiduciary responsibility or liability for any consequences, financial or otherwise, arising from, an investment in any security or financial instrument described herein or in any other security, or from the implementation of any investment strategy.

This information contained herein is not intended for distribution to, or use by, any person or entity in any country or jurisdiction where to do so would be contrary to law or regulation or which would subject Ossiam to any registration requirements in these jurisdictions.